
Motivation: Preclinical epilepsy research often 
requires assessments for the number and severity 
of seizures in mouse model studies. This is typically 
accomplished through time-consuming tedious 
human effort to review EEG/EMG signals or video 
recordings. As a result, this also limits the number of 
mice studied in an experiment.
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Experiment: Feasibility was tested using 10 Scn8a mice (5m/5f, 1-3 months old) that
exhibited seizures. These were continuously monitored for several days with
piezoelectric sensors (located beneath the cage floor) and simultaneous video
recordings.

• Video recordings were synchronized with of the cage-floor piezoelectric pressure
signals and human observers labeled all observed seizure events by marking the
event times, which were stored in a database for the training and testing of
machine learning algorithms.

• Six piezoelectric signal features related to signal energy and coherence were
extracted over 2-second intervals with 1-second increments (50% overlap). These
were examined to determine the feature with the best response to seizure onsets
without regard to other non-seizure arousal responses as the first pass detection.

• Feature sequence regions were then defined based on sustained high values from
a smoothed version of the feature sequence.

• Patterns of features within and around the region were characterized with region-
based features and with machine learning algorithms to regress to likelihood
values that maximized the seizure detection rate while minimizing false positives.

• The dataset provided many more non-seizure arousals, so a 5-fold cross-
validation train and test method was used in conjunction with a bootstrapped
sampling strategy to efficiently use data for performance estimation.

A locally scaled Teager Energy (TE) feature was found to have the most consistent strong response to seizure events (more than regular energy, line
length, and signal coherence). The 3 main phases of the full algorithm are described below. Train and test samples were selected from 387 video verified seizures and 7907

non-seizure arousal events as determined by peak TE points.

Ten bootstrapped 5-fold cross-validation train-and-test sequences were performed
with 200 randomly selected seizure and 200 randomly selected non-seizure labeled
events. A bagged decision tree with 127 learners was used in each resampling. A
recall and precision curve was created from the test outputs from each cross-
validation by sweeping a threshold over the validation likelihood values and
computing the recall and precision pair for each threshold. The average curve was
computed over the 10 bootstrapped results and the 95% confidence values were also
computed and shown with the dashed red lines.

Approach to Address Problem: Develop 
automatic noninvasive prescreen algorithms 
for mouse seizure events based on sudden 
changes in activity/motion patterns captured 
by cage-floor pressure sensors. Detection 
algorithms are designed to miss very few 
seizure events and efficient visualization 
interfaces are provided for human observers 
to jump to algorithm detected events and 
remove the false positives. Thereby greatly 
reducing the time and expense for assessing 
experimental results.  

Normal Activity Burst Seizure

Phase 1: Arousal Detection:

‒ Compute TE over 2-second 
intervals, with 1 second overlap.

‒ Divide TE by lower quartile values 
from 1-minute neighborhoods (Blue 
Lines in plots below)

‒ All locally scaled TE peaks were 
considered arousals and potential 
seizure events 

Phase 2: TE Sequence and Seizure-Related 
Features

‒ Low-Pass locally normalized TE time series 
(magenta line) 

‒ Define event region to be where the low-pass 
signal drops to 75% of its peak value (black 
dashed vertical lines denote region boundary)

‒ Extract 6 features from and around region: 
Mean and Peak TE; Peak TE Relative position 
in region; TE region skewness. Ratio of TE 
standard deviation over mean TE;  Ratio of TE 
standard deviation in bout area over TE 
standard deviation over 8-second interval 
starting 8 seconds beyond end of bout area

Phase 3: Likelihood regression:

– Regression algorithm derived with an 
Optimizable Ensemble Bagged 
Decision Tree.

– Ensemble decision tree regressor on 
6 sequence-based estimated seizure 
likelihood, where 0 implies low 
likelihood and 5 implies high likelihood

‒ Implemented in MATLAB R2023b 
(MathWorks, Natick, MA)

V. CONCLUSIONS

‒ Results demonstrate the feasibility of using cage-floor pressure sensors to
detect sudden changes in activity as a screening tool for assessing the
number of seizures in mice to greatly reduce the number of video sequences
needing to be viewed and labeled.

• Example: For a desired 90% seizure detection rate, a resulting 90% 
precision implies that 10% of the detected arousals that are not seizures 
will need to be viewed along with the true detected seizures. If the first 
pass detection resulted in 1000 arousal detections, only 100 of those will 
need to be viewed for false positive rejection after the second pass 
detection.

‒ A similar video interface used to observe and label events can also present
include likelihood with timestamp to advance video to the detected positions
and skipping over the low likelihood portions of the video.

‒ The locally scaled TE and it regions were superior to regular energy and line
length features to obtain higher recall and precision values. This likely due to
the tremoring during the seizure events that TE is more sensitive to given the
high frequency emphasis in its computation.

‒ Most seizures in this study were tonic and the algorithms learned these
patterns. For other types of mice/seizures, a new algorithm may need to be
trained.

Likelihood Threshold Values 
(0-5)
Expected Recall Threshold Precision

85% 3.32 92%

90% 2.67 90%

95% 1.56 85%

99% 0.78 77%
This poster summarizes results from machine learning studies to assess the feasibility of 
a time-saving method for the assessment of epileptic seizures in mice.
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A linear regressor was also developed and tested with the same sampling procedure
as above and for 90% recall it only achieved a 68% precision and at 95% recall, it
dropped to 60% precision.

Seizure Example: Seizure Example:

Rearing and Locomotion Example: Rearing and Locomotion Example:
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